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Abstract

Independent checkpointing allows maximum process autonomy but suffers from potential domino

effects. Coordinated checkpointing eliminates the domino effect by sacrificing a certain degree of

process autonomy. In this paper, we propose the technique of lazy checkpoint coordination which

preserves process autonomy while employing communication-induced checkpoint coordination for

bounding rollback propagation. The introduction of the notion of laziness allows a flexible trade-

off between the cost for checkpoint coordination and the average rollback distance. Worst-case

overhead analysis provides a means for estimating the extra checkpoint overhead. Communication

trace-driven simulation for several parallel programs is used to evaluate the benefits of the proposed

scheme for real applications.
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1 Introduction

Independent (or uncoordinated) checkpointing [1-3] for parallel and distributed systems allows

maximum process autonomy and independent design of recovery capability for each process. How-

ever, since the rollback of a message sender requires the sympathetic rollback [4] of the receiver,

the domino effect [5] is in general possible unless certain mechanisms are incorporated into the

checkpointing and recovery protocol to guarantee recovery line [6] progression. Existing techniques

for achieving domino-free rollback recovery can be classified into two primary categories [7]. The

first category can be called the minimum sympathetic rollback approach in which either the rollback

of a process will never undo any messages sent or the receiver of an undone message M will try to

roll back to the state immediately before receiving M. Wu and Fuchs [8] insert a checkpoint imme-

diately after each message is sent so that no sympathetic rollback is necessary for any failure. Kim

et al. [9, 10] and Venkatesh et al. [11] employ dependency tracking and insert extra checkpoints

before processing any mebtages that result in new dependency. The state-interval based approach

[12-21] models the program execution as consisting of a number of state intervals, each started by

processing a new message. Message logging in addition to checkpointing is employed to effectively

insert an "checkpoint" (in the optimized form of a message log) before each message receipt.

The second category can be called the bounded rollback propagation approach. Corresponding

checkpoints (based on the ordinal numbers) on different processes are required to coordinate with

each other in order to form a recovery line to bound the possible rollback propagation. Usually,

whenever a checkpoint is initiated by one process, all other processes are informed and required

to take appropriate checkpoints to guarantee the resulting set of checkpoints is consistent [22-27].

The number of processes required to participate in each checkpointing session can be reduced by

monitoring the recent message exchanging history [28]. For systems with clock synchronization

and/or bounded message transmission delay, the cost for checkpoint coordination can be further

reduced [29-32].

We will use the term eager checkpoint coordination for the coordination action performed when

checkpoints are initiated (as described above). In contrast, processes in a system with lazy check-

point coordination only coordinate their corresponding checkpoints when the message communica-



tion indicates a violation of checkpoint consistency2 . Briatico et al. [35] force the receiver of a

message M to take a checkpoint before processing M if the sender's checkpoint ordinal number

tagged on M is greater than that of the receiver. Checkpoints with the same ordinal numbers

are therefore always guaranteed to be consistent. However, the run-time overhead may be pro-

hibitively high due to the possibly excessive number of extra induced checkpoints. In this paper,

we generalize the concept of communication-induced checkpoint coordination by introducing the

notion of laziness Z as a measure of the frequency for performing coordination. Only corresponding

checkpoints with ordinal numbers nZ, where n is an integer, are required to be consistent with each

other and form the recovery line for bounding rollback propagation. Overhead analysis and exper-

imental evaluation show that lazy checkpoint coordination can significantly reduce the number of

extra checkpoints and offer a flexible trade-off betweea run-time overhead versus average rollback

distance.

The paper is organized as follows. Section 2 describes the system model and the checkpointing

and recovery protocol; Section 3 gives the motivation and the algorithm for lazy checkpoint coor-

dination; Worst-case overhead analysis is presented in Section 4 and the trace-driven simulation

results for several parallel programs are discussed in Section 5.

2 Checkpointing and Rollback Recovery

The system considered in this paper consists of a number of concurrent processes for which

all process communication is through message passing. Processes are assumed to run on fail-stop

processors [36] and each processor is considered as an individual recovery unit [15]. We do not

assume the piecewise deterministic execution model [20].

During normal execution, the state of each processor is periodically saved as a checkpoint on

stable storage. Let CPi.k denote the kth checkpoint of processor Pi with k > 0 and 0 < i < N - 1.

where N is the number of processors. A checkpoint interval is defined to be the time between

two consecutive checkpoints on the same processor and the interval between CPi,k and CPi.(k+l)

2The basic idea motivating the lazy checkpoint coordination is similar to the concepts behind the lazy release
consistencyin distribut-d shared memory [33] and the lazy message cancellation in optimistic distributed simulation
systems [34].

2



is called the kth checkpoint interval. Each message is tagged with the current checkpoint ordinal

number and the processor number of the sender. Each processor takes its checkpoint independently

and updates the direct dependency information table (or input table [2]) as follows: if at least one

message from the mth checkpoint interval of processor pj has been processed during the previous

checkpoint interval, the pair (j, m) is added to the table entry for the new checkpoint.

A centralized garbage collection algorithm [37] can be periodically invoked by any processor.

First, the dependency information for all existing checkpoints is collected to construct the checkpoint

graph [1] (Fig. 1(b)). All checkpoints corresponding to the vertices marked "X" in Fig. I (b) are

determined to be garbage by the algorithm and can therefore be discarded.

When processor Pi initiates a rollback, it sends out a rollback-initiating message [2] to ev-

ery other processor to request the up-to-date dependency information. Each surviving processor

takes a virtual checkpoint (represented by the dotted vertex in Fig. 1 (c)) upon receiving the roll-

back-initiating message. After receiving the responses, pi constructs the extended checkpoint graph

[1] and executes the rollback propagation algorithm shown in Fig. 2 to determine the recovery line

(the shaded vertices in Fig. 1 (c)). A rollback-request message is then broadcast to roll back each

processor according to the recovery line (Fig. 1 (d)).

There are two primary checkpoint consistency situations. In Fig. 3(a), the checkpoints CPik

and CPj,m are inconsistent because of the orphan message [31] Ma. In Fig. 3(b), CPi,k and CPj,m

can become consistent if the channel-state message [24] Mb is properly recorded. In this paper, we

assume either every message is synchronously logged 3 [12, 14] or an end-to-end transmission protocol

can guarantee the redelivery of the lost channel-state messages [28]. Therefore, checkpoints like

CP1 ,k and CPj,,n in Fig. 3(b) are considered consistent.

3 Lazy Checkpoint Coordination

3.1 Motivation

We will refer to the checkpoints initiated independently by each processor as basic checkpoints and

those triggered by the communication as induced checkpoints. Fig. 4(a) illustrates the situation

'Discussions on incorporating an asynchronous logging protocol into the independent checkpointing scheme de-
scribed in this section can be found in (3].
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Figure 1: Checkpointing and rollback recovery (a) the checkpoint and communication pattern (b)
checkpoint graph for garbage collection (c) extended checkpoint graph when po initiates the rollback
(d) checkpoint graph after recovery.

/* CP stands for checkpoint */
/* Initially, all the CPs are unmarked */

Include the latest CP of each processor in the root set;
Mark all CPs strictly reachable from any CP in the root set;
While (at least one CP in the root set is marked) {

Replace each marked CP in the root set by the latest unmarked CP on the same
processor;
Mark all CPs strictly reachable from any CP in the root set;

}
The root set is the recovery line.

Figure 2: The rollback propagation algorithm.
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Figure 3: Checkpoint consistency (a) orphan message (b) channel-state message.

where the communication pattern renders most of the basic checkpoints useless for rollback recovery

and the only recovery line is at the very beginning of the execution. A straightforward way of

avoiding such unbounded rollback propagation is to perform eager checkpoint coordination as shown

in Fig 4(b). Whenever a processor initiates a basic checkpoint, coordination messages (dotted

arrows) are broadcast to all other processors to request the cooperation in making a consistent set

of checkpoints [23]. Let B be the total number of basic checkpoints and I be the total number of

induced checkpoints. We define the induction ratio 1? as

R = (1)

which is a measure of the overhead for performing communication-induced checkpoint coordination.

Clearly, eager checkpoint coordination has R = N - 1 and will result in large run-time overhead

when N is large. In addition, the N - 1 coordination messages per checkpoint session constitute

another overhead.

The large overhead of eager checkpoint coordination results from its pessimistic nature. More

specifically, when p, in Fig 4(b) initiates its first basic checkpoint b1,14, it "pessimistically" assumes

that messages like M1 will exist in the future and cause b1,1 to be inconsistent with its corresponding

checkpoint b0,1 on p0. In order to guarantee b 1, belongs to a useful recovery line, p, "eagerly"

requests p0's cooperation at the time b1,1 is initiated. In contrast, lazy checkpoint coordination

adopts an optimistic approach by assuming that b0,1 will be consistent with b1,1. If the assumption

turns out to be true, no explicit coordination is necessary. An extra checkpoint will be induced on P0

only when the message M1 indicates that the assumption has failed (Fig 4(c)). From another point

of view, such a scheme "lazily" delays the broadcast of the coordination messages and implicitly

4 bi,k denotes the kth basic checkpoint of pi and CPi,h denotes the kth checkpoint of pi.
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Figure 4: Communication-induced checkpointing (a) the checkpoint and communication pattern (b)
eager checkpoint coordination (c) lazy checkpoint coordination with laziness = 1 (d) lazy checkpoint
coordination with laziness = 2.
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piggybacks them on future normal messages. Both checkpoint and message overhead can therefore

be reduced.

However, given a basic checkpoint pattern, the number of induced checkpoints in the above

scheme is determined by the communication pattern and is not otherwise controllable. In the worst

case, the induction ratio RZ can still be N - 1 as illustrated in Fig 4(c). In order to further reduce

the overhead, we can perform even "lazier" coordination by only enforcing the consistency between

checkpoints CPo,nz and CPI,nz where Z is called the laziness and n is an integer. Fig 4(d) shows the

case with Z = 2. No checkpoint is induced until the message M2 indicates the inconsistency between

b1,2 and b0,2 . The number of induced checkpoint can be reduced from 8 (Fig 4(c) with Z = 1) to 2 at

the cost of potentially larger rollback distance. It becomes clear that lazy checkpoint coordination

can provide a trade-off between the checkpointing overhead and average rollback distance.

3.2 The Protocol

Our approach is to incorporate the lazy checkpoint coordination into the independent checkpoint-

ing scheme as a mechanism for bounding roUback propagation. Therefore, the checkpointing and

rollback recovery protocol can be built on top of the one described in Section 2. During nor-

mal execution, each processor still takes its basic checkpoints independently. The laziness Z is a

predetermined-determined system parameter known to all processors. Suppose a processor pj with

current checkpoint ordinal number r is about to process a message M with sender pi's ordinal

number s. If pi detects the following condition to be true

I = Ls/ZJ > Lr/ZJ,

it realizes that CPi,,z and CPj,,z will be inconsistent unless an extra checkpoint is induced before

M is processed. We describe a possible implementation as follows. Each processor pj maintains a

variable V which is initialized to be Z and incremented by Z each time CPj,nz is taken. Before pj

processes a message M with s > V, it is forced to take the checkpoint CPj,iz and update its ordinal

number counter to 1Z. In other words, if M was sent after CPi,,z was taken, it must be processed

by pj after CPj,iz is induced. Notice that all checkpoints CPj,, with r < m < IZ become dummy

checkpoints which overlap with CPj,iz.

In addition to the centralized garbage collection algorithm [37], a simple distributed algorithm



can also be used for low-cost garbage collection. The basic idea is that if the current checkpoint

ordinal number of every processor has exceeded nZ, all the checkpoints CPj,m with m < nZ

becomes obsolete with respect to the recovery line consisting of {CPi,,,z : 0 < i < N - 1} and

therefore can be discarded. Each processor pi needs to maintain an array CP.progress[N] which

records the highest ordinal number for every other processor known to pj based on the information

included in each message. More efficient garbage collection can be achieved by piggybacking the

CP.progress[N] array on the normal messages periodically in order to maintain the "transitive"

knowledge of checkpointing progress of each processor [38].

Although the set of checkpoints {CPi,nz : 0 < i < N - 1} always forms a recovery line, the

two-phase recovery procedure described in Section 2 should still be used to search for the most

recent recovery line in order to minimize the number of rolled-back processors and the rollback

distance. One possible optimization is that the dependency information corresponding to the

garbage checkpoints as determined based on the CP.progress[N] array needs not be collected, thus

reducing the size of the responses to the rollback-initiating message and the time for constructing

the checkpoint graph.

4 Overhead Analysis

Since the checkpoint overhead of the lazy checkpoint coordination scheme depends on the run-

time dynamic communication pattern, it is important to analyze and estimate the potential extra

overhead resulting from the induced checkpoints. We will first show that, without any constraints

on the relative checkpointing progress of each processor, the worst-case induction ratio is (N - 1)/Z.

While under certain conditions which are typically met by real applications, the upper bound on

the induction ratio can be shown to be independent of N.

4.1 Worst-Case Analysis

Our approach to worst-case analysis consists of two steps. First, given any fixed basic checkpoint

pattern, we construct the worst-case communication pattern. Secondly, given any system with N

processors, we derive the worst-case induction ratio as a function of N and the laziness Z.
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In this section, we assume each checkpoint CPik is associated with a global time stamp

t(CPi.k)s. For any checkpoint and communication pattern P, define CPjP. - Cp, 6 if t(CPp.') <

t(CP;.nz) for all 0 < j < N - 1, i.e., CP",•z denotes the earliest checkpoint #nZ among all pro-

cessors. Given any basic checkpoint pattern and the laziness Z, we construct the communicit~on

pattern PO as follows. Suppose C.,Z = CP,nz Then pi sends a message to every other processor
and induces CP;,,: with t(Conz) • processor p1. Fig. 5(a) shows an example of P0

with Z = 2. We will call the interval between t(CPPf,•_)z) and t(C Pf') the induction session

#n which includes all the induced checkpoints CPJ',z. The following lemma will be used to prove

Po is the worst-case communication pattern in terms of the induction ratio.

LEMMA 1 Given a basic checkpoint pattern, we have t(CPfOz) _ t(CP!'nz) for arbitrary com-

munication pattern P and any positive integer n.

Proof. The proof is given by induction on n. Since there can not be any induced checkpoint

before t(CP!Pz) for any P, t(CPPz) only depends on the progress of taking basic checkpoints.

Therefore, t(CPf°) = t(CP'z) and the case n = I is true. For the case n = k, suppose CPfkZ =

CPPZ. All the Z checkpoints CPP with (k- 1)Z < 1 < kZ must be basic checkpoints because they

can not be induced before t(CPP.,kz). Also, t(CP.,(kI)z) < t(CPip,(k_1 z) < t(CPe) < t(CPi.kz)

by definition. Suppose the case n = k - 1 is true, i.e., t(CPk.,(k l)z) !5 t(CPf k,-.l)z)" We then have

ikZ P where q _ kZ because t(CFi)z) = t(CPk. -,.)z) by construction and there are

at least Z basic checkpoints of pi, i.e., the CPP's, between t(CP,• I)z) and t(CPP kz). Finally,

_(PP , k. _ t(CPPi = t cP- zk
t(cPfz) < t(CPiF.:z) < t ) = f, , =tC ,ikZ)

and we have proved t(CPfOz) < t(CP.P'z) for all positive integer n. 0

LEMMA 2 Given a basic checkpoint pattern, P0 is the worst-case communication pattern resulting

in the largest induction ratio.

5This is only for the purpose of presentation.
"8We will use CPk to denote the kth checkpoint of pi in the checkpoint and communication pattern P. When it is

clear from the context that the basic checkpoint pattern is fixed, we also use the same notation for the communication
pattern P.
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Figure 5: (a) Worst-case communication pattern (b) worst-case checkpoint and communication
pattern.

Proof. Let 4' denote the total number of induced checkpoints with ordinal number nZ for

the communication pattern P, and let q = maz{n : 4' $ 0}. be the maximum among n's such

that If 3 0. Clearly, 14 < N - 1. Since t(CP;.qz) < t(CPp Z) by Lemma 1, the checkpoint and

communication pattern with P0 must consist of at least q induction sessions. Let I1' denote the

total number of induced checkpoints for P, we then have

1•'o >_ IfO = q.-(N_ - 1) > If = 1P'.

1<n<q 1<n<q

Finally, because the number of basic checkpoints is fixed by the given basic checkpoint pattern. PO

has the largest induction ratio among all possible communication patterns. 0

Lemma 2 states that, for worst-case analysis of the induction ratio, we need only consider the
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communication pattern PO for each basic checkpoint pattern. Because the induction sessions are

well-defined in such patterns (as shown in Fig. 5), the derivations can be simplified.

tHEOREM 1 For any system with N processors and laziness Z, the induction ratio

N-i

- Z

Proof. For any basic checkpoint pattern with its corresponding PO which results in L complete

induction sessions, the number of induced checkpoints is L - (N - 1). Let B, denote the number of

basic checkpoints within the induction session #n, we have Bn > Z for all 1 < n < L because the Z

checkpoints CPP with (n - 1)Z < 1 < nZ can not be the induced checkpoints if CPPO -CPIo-- 1 ,1 i.nZ"

Therefore, the induction ratio

R= L.(N-1) < L.(N-1) _ N-1
R =I<,<L B,+ BL+• L L Z - Z

Fig. 5(b) shows an example of the worst case for N = 3 and Z = 2. The stacked checkpoints

indicate the fact that each dummy checkpoint CPP, overlaps with the induced checkpoint C ..

Since it takes exactly Z = 2 basic checkpoints to induce every N - 1 = 2 checkpoints, the induction

ratio is (N - 1)/Z = 1.

4.2 The Upper Bound under Constraints

The upper bound in Theorem 1 was derived under no constraints on the program behavior. Since

it is of order O(N), the induction ratio may be unacceptably high for systems with large number

of processors. However, a closer look at the two patterns in Fig. 5 reveals that the situation in (b)

which results in the worst-case induction ratio is less likely to happen for real applications where

the processors typically regularize their paces in taking basic checkpoints, as shown in (a). For

example in Fig. 5(b), it is very likely for po to take at least one basic checkpoint between CP.P

and CPf'. We can show that under the following con:traints which are usually satisfied in real

applications, the upper bound on the induction ratio is independent of N.

Constraint 1: Let Q denote the ratio of the maximum to the minimum length of the basic check-

point interval. Although each processor is allowed to take its basic checkpoints at its own pace.
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Q is typically bounded by a small constant Q. For example, Q is 2 or 3 for our experiments

described in the next section.

Constraint 2: Only the cases with Z > 2 will be considered for refined upper bounds because the

worst case for Z = 1 is always achievable even when Q is small (see Fig. 4(c)).

Constraint 3: The applications employing checkpointing and rollback recovery are usually long-

running jobs, which implies Z. L is quite large. (Recall L is the number of complete induction

sessions with P0.) In particular, we assume Z- L> • Q].

THEOREM 2 Under the above constraints, the induction ratio 7 < [Q].

Proof. Again we only have to consider P0 for each basic checkpoint pattern for the worst case.

Let M denote the smallest integer such that M . (Z - 1) > Q. Since Z > 2 by Constraint 2, we have

M < [Q]. We define an M-induction session as consisting of M consecutive induction sessions.

There are then LM = LL/MJ complete M-induction sessions, each containing M . (N - 1) induced

checkpoints. We consider the following two cases.

(a) N < M: By Theorem 1,

N-i
)z<N <N-I<N<M< [Q]. (2)z

(b) N > M: First we consider the number of induced checkpoints I. If Z > Q + 1, then M = 1

and I = L . (N-1). If Z < Q + 1, Z . L > [Q] in Constraint 3 implies L > [Q]. Since

M < [Q], we have LIM > 1 and

I = LmM'M.(N -1) + Ik ý-Lm-M.M.(N -1).

LM.M+I1k<L

In either case, I - LM • M . (N - 1).

Now consider the number of basic checkpoints B. For each induction session #n, the processor
pi with CPO = CPPO must contribute Z basic checkpoints and therefore the length of

each induction session is at least Z - 1 basic checkpoint intervals. Within each M-induction

session, at least N - M processors do not have CPP = CPO for any n. By the definition
jnZ = ,nZ

12



of Q, these N - M processors must each contribute at least L* J basic checkpoints.

Therefore,

B> LM.(M.Z+(N-M)_ -M.(Z- 1)J)Q
and

I M. (N - 1)S= • < .(3)-M . Z + (N - M) . L- J

Since Z > 1 and MLfziŽ > 1 by definition, we have

S< M.(N-1) <M<_[Q]. (4)
M + (N - M)

Notice that Eqs. (3) and (4) are still valid if we replace M with any m such that M < m < [Q].

By combining Theorem 1, Eq. (2) and Eq. (3), we then define the refined upper bound, called the

Q - bound, as follows.

Q -bound = minM<m<rQ{ m (N-1) (5)m.-Z +[N > m] -((N -m).- L -Z'J)}

where [N > m] = 1 if N > m is true and 0 otherwise.

Fig. 6(a) compares the worst-case induction ratio with the Q - bound where Q = 2 for N = 8, 16

and 32. While the worst-case ratio (N - 1)/Z clearly grows with N, the Q - bound is relatively

insensitive to N. Fig. 6(b) compares the worst-case induction ratio, which is equivalent to the

Q - bound with Q = oo, with the Q - bound where Q varies from 2 to 5. Since our purpose of

introducing the Q - bound is to estimate the induction ratio for real applications in advance, the

insensitivity of the Q -bound to the exact value of Q suggests that an approximate value of Q suffices

for the estimation. Finally, notice that if Z is chosen to be at least Q + 1, we have 7? < M = 1.

i.e., the number of induced checkpoints will never exceed the number of basic checkpoints.

5 Experimental Results

Four parallel programs written in the Chare Kernel language are used for the communica-

tion trace-driven simulation. The Chare Kernel has been developed as a medium-grain, machine-

13
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Figure 6: (a) Worst-case induction ratio and the Q - bounds (Q=2) for various N (b) worst-case
induction ratio (N = 32) and the Q - bounds for various Q.
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independent parallel language [39]. Programs written in the Chare Kernel language can run un-

changed on both shared-memory and distributed-memory machines such as Encore Multimax, Se-

quent Symmetry, Intel iPSC/2 and i860 hypercubes and a network of Sun workstations. Program

traces used in this paper are collected from an Multimax 510.

The four programs include two newly developed CAD applications, Test generation and Logic

synthesis, and two search applications, Knight tour and N queen. The execution times are between

25 and 45 minutes (see Table 1). The total number of messages ranges from tens to hundreds of

thousands. Our simulation uses the following scheme for inserting checkpoints. The predetermined

minimum basic checkpoint interval is chosen to be 2 minutes. A variable NextLCP_ Time is initialized

to 2 minutes. Each processor checks its local clock after processing every 100 messages. If the clock

time exceeds NextCP.Time, a basic checkpoint is inserted and NextCPFTime is incremented by

2 minutes. The resulting average basic checkpoint interval (CPI) for each program is listed in

Table 1. Before processing each message, the processor also checks if an induced checkpoint and

the corresponding update of the ordinal number counter are necessary, as described in Section 3.

All reported numbers are averaged over five runs.

Table 1: Execution and checkpoint parameters of the Chare Kernel programs.

Programs fI Test Logic Knight N 1
__ generation synthesis tour queen

Number of processors 8 6 8 6
Execution time (sec) 2,076 1,736 2,436 1,567
Number of messages 28,219 411,733 104,170 25,880
Average number of basic
checkpoints per processor 12.6 11.8 18.0 10.5
Average basic CPI (sec) 158 140 132 139

Q _ _2.17 2.48 1.42 1.55

Under-2 percentage 99.6% 97.0% 100% 100%

We expect the variation of the basic checkpoint interval to be small because of the way it is

maintained. In particular, we choose Q = 2 to estimate the induction ratio. The exact value of

Q for each program is listed in Table 1. Although Q is slightly greater than 2 for the first two

programs, the numbers listed in the row of "Under-2 percentage" shows that a very high percentage

15
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synthesis (c) Knight tour (d) N queen.
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of the basic checkpoint intervals are covered by Q = 2. Also, since the Q - bound is insensitive to

the exact value of Q, Q = 2 should suffice for our purpose. Fig. 7 plots the Q - bounds against the

worst-case and the actual induction ratios for the four programs. It is shown that the Q - bound

provides a good estimation of the induction ratio for real applications. The large difference in the

ratio between Z = 1 and Z > 2 confirms that our generalization of the idea of communication-

induced checkpoint coordination as described in [35] can significantly reduce the extra checkpoint

overhead.

Fig. 8 gives the average rollback distances in terms of the number of average basic CPIs. The

almost linear behavior can be explained as follows. Every N basic checkpoints bi,k's, 0 < i < N - 1,

are taken at approximately the same time tA. If any one of them, say bj,k, is CP.,nz, then either bi,k

is consistent with bj,k or CPi,,z is induced shortly due to the relatively large number of messages.

Hence, a recovery line is formed around tk. For Z = 1, that means the average rollback distance is

at most 0.5 basic CPI and the exact value will depend on the offset between bi,k's at run-time. For

Z > 2, as long as some CPi,nz's are induced before bi,k's are initiated, bi,k's become CPi,nz+1 's and

one of bi,k+(z-1)'s will become CP.,(•+ )z which means a new recovery line will very likely to exist

around t k+(Z-1). Therefore, the average rollback distance is approximately (Z - 1)/2 basic CPIs

as shown by the curve named "Estimated" in Fig. 8. It becomes clear that Figs. 7 and 8 provide a
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flexible trade-off between run-time overhead and recovery efficiency.

6 Concluding Remarks

We have proposed the technique of lazy checkpoint coordination and incorporated it into the in-

dependent checkpointing protocol as a mechanism for bounding rollback propagation. The recovery

line is guaranteed to move forward by performing communication-induced checkpoint coordination

only when the predetermined consistency criterion is about to be violated. The notion of laziness

%as introduced to provide the trade-off between extra checkpoint overhead during normal execution

versus the average rollback distance for recovery. Overhead analysis shows that the upper bound on

the induction ratio, i.e., the number of induced checkpoints divided by the number of basic check-

points, is related to the maximum ratio between the basic checkpoint intervals. Communication

trace-driven simulation results for several parallel programs showed that our analysis can provide a

good estimation for the induction ratio, and lazy checkpoint coordination can significantly reduce

the extra checkpoint overhead for real applications.
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